

www.naukasoft.ru

000 «НПО НаукаСофт»

Компания НаукаСофт ведёт свою деятельность с 2005 года.

Создана на базе ведущих научных школ факультета авиационного оборудования ВВИА имени профессора Н.Е. Жуковского, а также научно-исследовательского Центра образовательных и информационных технологий Военно-воздушной академии им. Ю.А. Гагарина.

С 2023 года
000 «НПО НаукаСофт»
расширяет
производственные
мощности: в Московской
области строится завод
по выпуску серийных
узлов и агрегатов систем
электроснабжения
для гражданской
и специальной техники.

Основные виды деятельности организации, направленые на решение научно-прикладных проблем

Электроэнергетика автономных объектов:

- разработна теоретико-прикладных основ построения электроэнергетических установок и систем:
- проектирование и испытание бортовых систем электроснабжения с оптимизацией их массогабаритных показателей.

Управление и навигация:

- разработка по модульной технологии комплексных систем навигации и управления (КСНУ) летательных аппаратов и их информационного обеспечения (ИО):
- полунатурные и лётные испытания КСНУ и ИО.

Информационно-аналитические системы:

- разработка методов автоматизации и их реализация для наукоёмких и высокотехнологичных инженерных задач;
- проектирование открытых информационно-аналитических систем с применением кроссплатформенных технологий.

Электромеханические приводы EPAL/EPAR

 для систем бортового оборудования самолётов и вертолётов, строительных, сельскохозяйственных и транспортных машин, робототехники, промышленного и технологического оборудования.

Радиооптические системы:

- разработка бортовых радиолокаторов с синтезированной апертурой;
- разработка радиолокационных систем контроля воздушного пространства в ближней зоне (антидроновых радаров).

Стендовые комплексы и измерительное оборудование:

- испытательный комплекс каналов и систем генерирования;
- испытательный комплекс систем распределения постоянного и переменного тока;
- испытательный комплекс систем электроснабжения постоянного и переменного тока.

Сотрудники научно-производственного объединения НаукаСофт являются членами докторских диссертационных советов, редколлегий общероссийских журналов, входящих в перечень ВАК РФ, являются авторами более 500 научных статей, 12 монографий, 19 учебников и учебных пособий.

На данный момент в компании работает более 200 сотрудников, среди которых: 13 докторов наук, 18 кандидатов технических наук, аспиранты и студенты ведущих вузов Москвы, а также высококвалифицированный инженернотехнический персонал, имеющий большой опыт в решении прикладных задач.

Имеется собственное опытно-серийное производство, цех механообработки с центрами ЧПУ, монтажно-сборочный цех радиоэлектронной аппаратуры.

Выпускаемые опытные и серийные образцы соответствуют международным стандартам качества и безопасности, ГОСТ, имеется сертификат разработчика авиационной техники. Все проекты, связанные с Госзаказом, проводятся под контролем аккредитованного представительства и независимой инспекции Росавиации.

СИЛОВЫЕ ИНТЕЛЛЕКТУАЛЬНЫЕ ЗАЩИТНО-КОММУТАЦИОННЫЕ УСТРОЙСТВА СИСТЕМ РАСПРЕДЕЛЕНИЯ ЭЛЕКТРОЭНЕРГИИ

Интеллектуальное распределительное устройство

Цифровой управляющий модуль

Управляемое коммутационное устройство постоянного и переменного токов

Локальный центр управления нагрузками

УСТРОЙСТВА ПРЕДНАЗНАЧЕНЫ ДЛЯ:

- » Управления распределением электрической энергии на борту летательного аппарата;
- » Контроля и диагностирования технического состояния основных элементов системы электроснабжения;
- » Информационной связи с системой верхнего уровня управления летательным аппаратом.

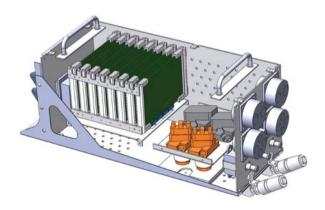
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ УСТРОЙСТВ

Напряжение питания устройств	27 В по ГОСТ Р 54073-2017
Максимальный коммутируемый ток	600 A
Максимальная потребляемая мощность	100 Вт
Максимальное количество подключаемых устройств	128
Интерфейс информационного обмена	RS485, ARINC 825, CAN
Скорость информационного обмена	128 000 бит/с
Исполнение	Всеклиматическое («Мороз 6») -60+85°C

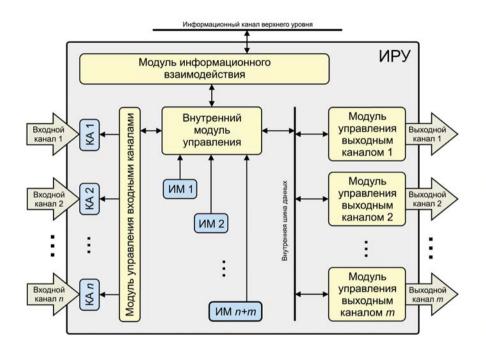
ИНТЕЛЛЕКТУАЛЬНОЕ РАСПРЕДЕЛИТЕЛЬНОЕ УСТРОЙСТВО (ИРУ-3.5HC)

Интеллектуальное распределительное устройство (ИРУ-3.5НС) является первым в России цифровым специализированным бортовым устройством распределения электроэнергии и предназначено для применения в системах электроснабжения летательных аппаратов

Назначение ИРУ-3.5НС:


- управление в автоматическом режиме распределением электроэнергии на борту летательного аппарата;
- контроль и диагностика технического состояния основных элементов системы электроснабжения;
- информационная связь с системой верхнего уровня управления летательным аппаратом.

Основные функции ИРУ-3.5НС:


- автоматическое подключение источников и потребителей, распределение электроэнергии по вторичной системе питания:
- автоматическое подключение сопряженного ИРУ при многоканальной топологии системы электроснабжения;
- реконфигурация шин питания при отказе одного из каналов основной системы генерирования либо сопряженного ИРУ:
- управление контакторами системы распределения электроэнергии, как от бортовой системы управления, так и в автоматическом режиме;

- ограничение токов потребления приёмниками электроэнергии;
- питание соответствующих категорий приёмников бортового комплекса в зависимости от режима работы;
- защита устройства распределения электроэнергии в авиационных системах электропитания от недопустимых отклонений параметров качества электроэнергии при работе от бортовых и аэродромных источников;
- защита системы распределения от коротких замыканий в фидерах питания источников и потребителей электроэнергии;

- защита системы распределения от превышения заданного значения тока каждого выходного канала подключения нагрузки;
- настройка значений тока срабатывания защиты выходных каналов подключения нагрузки;
- контроль технического состояния элементов системы электроснабжения и параметров сети;
- информационный обмен с системой управления общесамолётным оборудованием.

Структура ИРУ-3.5НС

Основные параметры и характеристики ИРУ-3.5HC

Номинальное входное/ выходное напряжение постоянного тока, В	27 ± 2
Номинальная выходная электрическая мощность, Вт	3500
Количество выходных каналов подключения нагрузки	48
Максимальный ток нагрузки, А	
6 каналов	20
6 каналов	10
36 каналов	5
Масса, кг	10
Габаритные размеры, мм	
длина	430
ширина	180
высота	195

ИНТЕЛЛЕКТУАЛЬНОЕ РАСПРЕДЕЛИТЕЛЬНОЕ УСТРОЙСТВО (ИРУ-7НС)

ИРУ-7НС предназначено для распределения электроэнергии постоянного тока номинального напряжения 27 В с качеством по ГОСТ Р 54073-2017, поступающей от источников электроэнергии приемникам на всех этапах полёта и наземной подготовки

Назначение:

ИРУ-7НС предназначено для применения в составе систем электроснабжения воздушных судов или в иных объектах с условиями эксплуатации, соответствующими требованиям группы исполнения 3.1.1 по ГОСТ РВ 20.39.304-98.

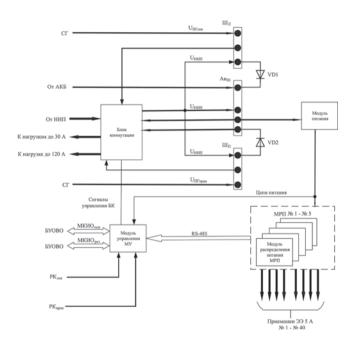
ИРУ-7НС выполняет следующие функции:

- обеспечение автоматической реконфигурации СЭС;
- обеспечение реконфигурации СЭС по командам, поступающим по МКИО;
- управление включением/выключением каналов приёмников электроэнергии с номинальными токами до 5 и 120 А по командам, поступающим по МКИО;
- обеспечение защиты от длительных токовых перегрузок и коротких замыканий в фидерах приёмников электроэнергии;
- обеспечение информационного взаимодействия по каналам МКИО с бортовой системой управления;
- приём и обработку аналоговых и дискретных сигналов от сопряженных систем;

 формирование и выдачу аналоговых и дискретных сигналов в сопряжённые системы.

Основные преимущества:

- обеспечивается возможность реализации децентрализованной и интеллектуальной системы распределения электроэнергии;
- появляется возможность проектировать сложные системы распределения электроэнергии с адаптивным управлением на базе модулей ЛЦУН;
- расширяются возможности диагностирования работоспособности системы распределения электроэнергии;
- улучшаются эксплуатационные характеристики;
- снижается стоимость жизненного цикла.


Виды, типы и характеристики защит силовых каналов

Вид защиты	Тип защиты	Ток, А	Задержка, с	Задержка между повторным включением, мин
от коротких замыканий	необратимая защита	не менее 4-Іном	не более 0,35	-
		не менее 1,25-Іном	не менее 60	10
от длительных токовых перегрузок	обратимая защита	не менее 1,5-Іном	не менее 30	10
5.5. Þ/5511		не менее 3-Іном	не более 1	10

Основные технические характеристики:

Номинальная коммутируемая мощность, Вт	7000
Номинальное входное/выходное напряжение, В	27
Количество входных каналов подключения, шт.	4
Номинальный ток входных каналов, А	до 300
Количество выходных каналов:	
• с номинальным током до 120 А, шт.	1
• с номинальным током до 30 А, шт.	20
• с номинальным током до 5 А, шт.	40
Возможность управления выходными каналами:	есть
Защита от длительных токов и коротких замыканий входных каналов:	аппаратно- программная
Время непрерывной работы, ч., не менее	6
Каналы информационного обмена	по ГОСТ Р 52070-2003
Количество каналов информационного обмена, шт.	2

Структура ИРУ-7НС

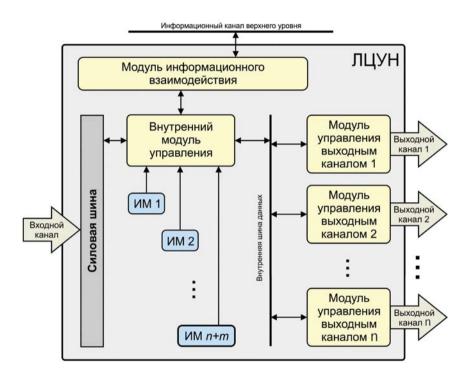
ЛОКАЛЬНЫЕ ЦЕНТРЫ УПРАВЛЕНИЯ НАГРУЗКАМИ АВТОНОМНЫХ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ (ЛЦУН)

ЛЦУН — это многоканальное бесконтактное коммутационное устройство, предназначенное для управляемого распределения электроэнергии потребителям в заданных условиях и режимах

Функциональные возможности ЛЦУН:

- от 8 до 24 электрически защищенных каналов распределения электроэнергии;
- автоматический контроль тока, напряжения и температуры;
- встроенная защита электрических цепей от перегрузок и коротких замыканий;
- программируемое ограничение тока каждого канала на 20А, 10А и 5А с шагом уставки 10% от номинального значения;
- организация параллельной работы выходных каналов:
- управление коммутацией и контроль состояния осуществляется по интерфейсу RS-485 (опционально ARINC 825, CAN):
- подключение на одну шину управления верхнего уровня до 256 аналогичных устройств;
- получение информации об электрических параметрах работы, настройка уставок защиты и правил включения нагрузок через единую шину управления;
- обновление специального программного обеспечения осуществляется через шину управления;
- работа в сложных эксплуатационных условиях (в соответствии с требованиями «Мороз 6»).

Область применения ЛЦУН:


- системы распределения автономных комплексов электроснабжения авиационных (пилотируемых и беспилотных) ЛА;
- системы распределения автономных комплексов электроснабжения сухопутных транспортных средств (бронетехника, спецавтотранспорт);
- системы распределения автономных комплексов электроснабжения робототехнических систем:
- системы распределения автономных комплексов электроснабжения систем управления вооружением;
- системы распределения автономных комплексов электроснабжения модульных энергоузлов для работы в сложных условиях.

Основные преимущества ЛЦУН:

- обеспечивается возможность реализации децентрализованной и интеллектуальной системы распределения электроэнергии;
- появляется возможность проектировать сложные системы распределения электроэнергии с адаптивным управлением на базе модулей ЛЦУН;
- расширяются возможности диагностирования работоспособности системы распределения электроэнергии;
- улучшаются эксплуатационные характеристики;
- снижается стоимость жизненного цикла.

Структура ЛЦУН

Технические характеристики:

Максимальный входной ток, А	120		
Номинальное входное напряжение, В	10–32		
Напряжение в переходном режиме (t<10 мкс), В	±600		
Потребляемая мощность, Вт	30		
Рабочая температура, °С			
• -60+85			
Максимальный выходной ток, А (определяется конфигурацией)			
• 8 каналов	20		
• 12 каналов	10		
• 24 канала	5		

УПРАВЛЯЕМОЕ КОММУТАЦИОННОЕ УСТРОЙСТВО (УКУ-НС)

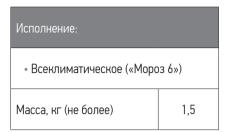
Исполнительное устройство управления, контроля и защиты силовых электрических сетей постоянного и переменного тока

Назначение:

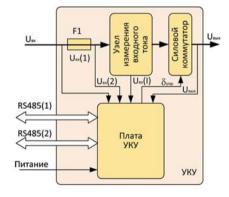
- коммутация силовых цепей системы распределения электроэнергии;
- защита силовых цепей от токовых перегрузок и коротких замыканий;
- контроль и диагностика силовых цепей системы распределения электроэнергии;
- информационный обмен с цифровым управляющим модулем (ЦУМ-НС).

Устройство обеспечивает:

- создание новых интеллектуальных систем электроэнергии (smart grid);
- контроль состояния сети в каждой узловой точке;
- оценка параметров качества электроэнергии в каждой точке сети;
- создание многоуровневой защиты всей сети;
- высокую селективность защиты каждого участка;
- выполнение в автоматическом режиме «прозвонки» всей кабельной сети.


Основные преимущества:

- обеспечивается возможность контроля и защиты децентрализованной и интеллектуальной системы электроснабжения;
- появляется возможность проектировать сложные системы электроснабжения с адаптивным управлением на базе модулей УКУ-НС:
- расширяются возможности диагностирования работоспособности силовых цепей системы электроснабжения;
- улучшаются эксплуатационные характеристики;
- расширяется мобильность в настройке параметров уставки защиты электроцепей;
- снижается стоимость жизненного цикла.



Технические характеристики:

Номинальный коммутируемый ток, А	100, 200, 400, 600		
Номинальное напряжение питания, В	27		
Номинальное коммутируемое напряжение, В			
• постоянного тока	27		
• переменного трехфазного тока	115/200 (400 Гц)		
Настраиваемая уставка защиты:			
• токовая перегрузка			
• короткое замыкание			
Интерфейс информационного обмена:			
RS485, ARINC 825, CAN			

Структура УКУ-НС

Область применения — это системы автономных комплексов электроснабжения:

- авиационных (пилотируемых и беспилотных) летательных аппаратов;
- сухопутных транспортных средств (бронетехника, спецавтотранспорт);
- робототехнических систем;
- систем управления вооружением;
- модульных энергоузлов для работы в сложных условиях.

УПРАВЛЯЕМОЕ КОММУТАЦИОННОЕ УСТРОЙСТВО (УКУ1-500HC)

Предназначено для коммутации силовых цепей системы электроснабжения постоянного тока повышенного напряжения номинального значения 270 В с номинальным током до 500 А

УКУ1-500НС выполняет следующие функции:

- коммутация силовых цепей в системы электроснабжения постоянного тока повышенного напряжения номинального значения 270 В, в т.ч. создаваемых по концепции более электрического самолета;
- оценка (измерение) и обработка данных о токе силовой коммутируемой цепи;
- оценка (измерение) и обработка данных о напряжении силовой коммутируемой цепи:
- защита коммутируемой цепи от длительных токовых перегрузок;
- защита коммутируемой цепи от коротких замыканий;
- защита коммутируемой цепи от отклонения напряжения от заданных требований;
- взаимодействие с информационной системой высокого уровня по интерфейсу RS-485.

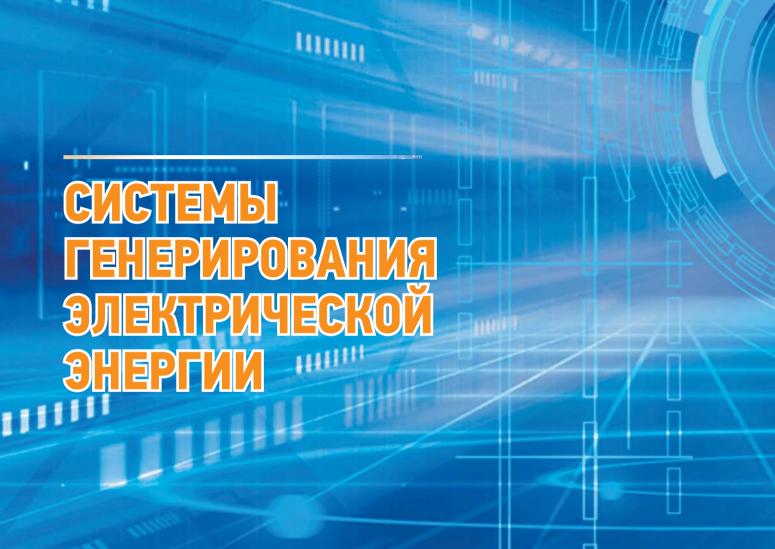
Основные технические характеристики УКУ1-500НС:

Количество коммутируемых каналов, шт.	1
Номинальный ток коммутируемого канала, А	500
Номинальное напряжение коммутируемого канала, В	270
Интерфейс информационного обмена	RS-485
Количество каналов информационного обмена, шт.	2
Виды и типы защит:	
• ток срабатывания при времени срабатывания не менее 600 с, А	625 ± 10 %
• ток срабатывания при времени срабатывания не менее 300 с, А	750 ± 10 %
• ток срабатывания при времени срабатывания не менее 5 с, А	1000 ± 10 %
• ток срабатывания при времени срабатывания не более 2 с, А	≥ 1500
Габаритные размеры, мм	370 x 300 x 140
Масса, кг	11,4

ЦИФРОВОЙ УПРАВЛЯЮЩИЙ МОДУЛЬ (ЦУМ-НС)

Специализированный бортовой вычислитель, предназначенный для управления всеми агрегатами и устройствами автономных систем электроснабжения, а также для организации информационного взаимодействия с вычислителями других систем и выдачи информации экипажу

Назначение:


- управление, контроль и диагностика устройств и агрегатов системы электроснабжения:
- формирование команд управления исполнительными устройствами системы распределения электроэнергии по алгоритмам различных режимов;
- формирование актуальных данных для вычислительных устройств других систем и экипажа.
- Модуль обеспечивает:
- организацию высокоскоростной специализированной локальной вычислительной сети по управлению различными системами электроснабжения;
- реализацию технологии smart grid («умная сеть») в бортовых системах распределения электроэнергии;
- интеллектуальное управление распределёнными системами генерации;
- адаптивное управление режимами реконфигурации сети;
- увеличение службы бортовой электрической сети;

- согласование режимов работы бортового оборудования и системы электроснабжения:
- контроль технического состояния всех элементов системы с оценкой предотказного состояния и регламентом обслуживания.

Технические характеристики:

Количество подключаемых устройств и агрегатов, шт.	до 128		
Количество информационных сетей, шт.	2 (осн., резерв.)		
Количество аналоговых измерительных входов, шт.	16		
Скорость информационного обмена, бит/с	128 000		
Номинальное напряжение питания, В	27		
Исполнение:			
• Всеклиматическое («Мороз 6»)			
Масса, кг (не более)	2,5		

СИСТЕМА ГЕНЕРИРОВАНИЯ СГ-НС

В состав СГ-НС входят следущие основные узлы, конструктивно выполненные в виде отдельных составных частей: магнитоэлектрический генератор МЭГ-НС; преобразователь напряжения ПН-НС

Система генерирования электрической энергии для беспилотного летательного аппарата (мощность 5,6 кВт)

Магнитоэлектрический генератор

Преобразователь электрической энергии

27 В по ГОСТ Р 54073-2010
2 независимых
2,8 кВт
5,6 кВт
3500-8000 об/мин
6
3
две трехфазные звезды
самовентиляция + продув
168 x 149 x 149 мм
4 кг
290 x 225 x 50 мм
5 кг

Система генерирования электрической энергии (мощностью 3,5 кВт)

Магнитоэлектрический генератор

Преобразователь электрической энергии

Напряжение постоянного тока	27 В по ГОСТ Р 54073-2010
Номинальная мощность	3,5 кВт
Диапазон частот вращения	от 3000 до 9000 об/мин
Схема соединения фаз обмотки	«звезда»
Охлаждение генератора	самовентиляция + продув
Охлаждение преобразователя	продув
Габаритные размеры генератора	150 x 150 x 200 мм
Масса генератора	4,5 кг
Габаритные размеры преобразователя	247 x 325 x 120 mm
Масса преобразователя	6 кг

Система генерирования электрической энергии для беспилотного летательного аппарата вертолетного типа

Магнитоэлектрический генератор

Магнитоэлектрический генератор

	(a)	,
Номинальная мощность	3,5 кВт	15 кВт
Номинальная частота вращения	от 3500 до 9000 об/мин	8000 об/мин
Номинальное фазное напряжение	от 60 до 135 В	120 B
Число фаз рабочей обмотки	3	3
Число пар полюсов	3	3
Рабочая температура обмотки	180 °C	180°C
Ток фазы	18,7 A	41,67 A
Масса	4,5 кг	9 кг
Габаритные размеры:		
диаметр	150 мм	182 мм
длина	200 мм	288 мм

Система генерирования электрической энергии для самолета МВЛ 9-19 (мощность 30 кВт)

Магнитоэлектрический двигательгенератор

Преобразователь электрической энергии

Напряжение постоянного тока	27 В по ГОСТ Р 54073-2010
Номинальная мощность	30 кВт
Номинальная частота вращения	12800 об/мин
Число фаз обмотки	3
Число пар полюсов	4
Схема соединения фаз обмотки	«звезда»
Охлаждение стартер-генератора	самовентиляция + продув
Габаритные размеры стартер-генератора	324 x 231 x 206 mm
Масса стартер-генератора	18 кг
Габаритные размеры преобразователя	660 х 435 х 550 мм
Масса преобразователя	51 кг

Отечественные магнитоэлектрические генераторы

Магнитоэлектрический генератор МЭГ-НС предназначен для преобразования механической энергии, отбираемой от маршевого двигателя в электроэнергию трехфазного переменного тока

Технические характеристики:

- номинальная частота вращения 3000-9000 об/мин
- номинальное фазное напряжение 70-210 В
- число фаз 3

Разработана линейка магнитоэлектрических генераторов различной мощности от 2 до 9 кВт

Наименование	Номинальная мощность, кВт	Ток фазы, А	Масса, кг	Габаритные размеры (D x L), мм
МЭГ-2НС	2	3,5-10	2,5	150 x 130
МЭГ-2,5НС	2,5	4-12	2,75	150 x 140
МЭГ-ЗНС	3	5-15	3	150 x 150
МЭГ-3,5НС	3,5	6-18	3,25	150 x 160
МЭГ-5НС	5	8-24	4	150 x 180
МЭГ-6НС	6	10-30	4,5	150 x 200
МЭГ-7НС	7	12-36	5	150 x 220
МЭГ-9НС	9	15-45	6	150 x 250

Стартер-генераторная система для газотурбинных двигателей СТГ-НС

Магнитоэлектрический стартер-генератор предназначен для запуска газотурбинных двигателей мощностью до 2000 л.с. и генерирования электроэнергии переменного тока нестабильного уровня напряжения и частоты. Работает совместно с блоком запуска и управления.

Область применения:

 в составе системы электроснабжения воздушных судов, а также в наземных энергоустановках.

Основные преимущества:

 изделие имеет высокие показатели надежности и ресурса, обладает встроенными средствами измерения и защитой от аварийных режимов работы с помощью механизма электромагнитного расцепления. Изготовлено полностью из отечественного сырья и материалов на территории РФ. Эксплуатируется по техническому состоянию.

Стартер-генератор магнитоэлектрический СТГ-НС

номинальная мощность

В стартерном режиме, кВт	5-50
в генераторном режиме, кВА	до 40
удельная мощность, кВА/кг	2

Блок управления СТГ-НС

Габариты Ш*В*Г, мм	498*242*506
табариты ш в т, мімі	430 242 300
Входное напряжение сети постоянного тока, В	от 18 до 29,4
Входное напряжение сети трехфазного переменного тока, В	от 90 до 143
Частота, Гц	от 257 до 400
Выходное напряжение, В	115
Частота, Гц	400
Мощность, кВТ	50
Температурный диапазон, °С	от -55 до +75

Высокоскоростной стартер-генератор СТГ-0,6НСВ

Малогабаритный высокоскоростной авиационный стартер-генератор для запуска турбореактивных двигателей. Работает совместно с блоком запуска.

Область применения:

- в составе системы электроснабжения малоразмерных летательных аппаратов. Основные преимущества:
- изделие способно осуществить запуск и генерирование электроэнергии с прямым приводом от турбины входного аппарата реактивного двигателя, обладает высокими удельными массогабаритными характеристиками. Изготовлено полностью из отечественного сырья и материалов на территории РФ.

Параметры и режимы работы СТГ-0,6НСВ

Число фаз	3
Масса изделия, не более, кг	0.4
Габаритные размеры, мм×мм	45×75
Стартерный режим, кВт	1
Номинальная мощность, кВА (генераторный режим)	0.6
Диапазон генерируемого фазного напряжения, В	от 5.5 до 6.5
Номинальный КПД	0.94
Частота вращения: генераторный режим, об/мин стартерный режим, об/мин	до 60 000 до 30 000

Высокоскоростной стартер-генератор СТГ-0,6НС

ПЕРСПЕКТИВНЫЕ РАЗРАБОТКИ

Электрическая машина мощностью 60 кВт

Электрическая машина мощностью 90 кВт (двигатель и генератор)

Электрическая машина мощностью 150 кВт (двигатель и генератор)

Электрическая машина мощностью 300 кВт (двигатель и генератор)

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ РАЗРАБАТЫВАЕМЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ

Мощность	30 кВт	60 кВт	90 кВт	150 кВт	300 кВт
Удельная мощность, кВт/кг	2	2,7	4	4	4,8
Тип охлаждения	Воздушное	Жидкостное	Жидкостное	Жидкостное	Жидкостное
Напряжение, В	270	130	270	270	270
Частота вращения, об/мин	7000	2100	2200	2500	18002500
кпд	0,95	0,93	0,94	0,95	0,96
Масса, кг	13,5	22	21	32	62

ЭЛЕКТРОДВИГАТЕЛЬ KV-125HC

Бесколлекторный высокоэффективный двигатель, рекомендуемый к использованию с пропеллерами 24"-27". Оптимальная конструкция обеспечивает отличное охлаждение и минимальный вес двигателя.

Электродвигатель KV-125HC

Область применения:

в качестве привода винта самолётного, вертолётного и мультикоптерного типа.

Вес и габариты

Габаритные размеры, мм	90*27
Напряжение питания, В	25-50
Максимальный ток, А	30
Мощность, кВт	1
Масса, г	240
Частота вращения об/мин	от 3 000 до 6 000

Является аналогом T-motor U8

ДВИГАТЕЛЬ-ГЕНЕРАТОР

Бесконтактный электродвигатель постоянного тока — это электрическая машина постоянного тока, в которой механический коллектор заменен полупроводниковым коммутатором, поэтому его также называют вентильный электродвигатель

Бесконтактные двигатели обладают такими важными функциональными свойствами, как:

- длительная наработка;
- высокая надежность запуска после длительного пребывания в нерабочем состоянии:
- пригодность для работы во взрыво- и пожароопасных средах;
- работоспособность при низких давлениях окружающей среды.

Компания НаукаСофт совместно с ОАО «Сарапульский электрогенераторный завод» разработала и изготовила двигатель-генератор. Двигатель предназначен для использования в качестве привода силовой установки перспективных самолётов и вертолётов на электрической тяге, в том числе разрабатываемого полностью электрического самолёта АВФ-32НС, с возможностью рекуперации энергии во время полёта. Отработанные технические и технологические решения для 30 кВт изделия позволяют масштабировать его по мощности (от 3 до 500 кВт).

Применение в составе двигателя-генератора центробежного охлаждающего вентилятора даёт возможность ему работать эффективно при вращении как в одну, так и в другую сторону.

За счет использования сдвоенных подшипников в переднем щите имеет возможность воспринимать осевые нагрузки как в прямом направлении (работа в двигательном режиме), так и в обратном направлении (работа в генераторном режиме при авторотации вентилятора силовой установки).

Основные технические характеристики

Номинальная мощность, кВт	30
Номинальная частота вращения, об/мин	7000
Разгонная частота вращения, об/мин	8400
Номинальное фазное напряжение, В	200
Число фаз рабочей обмотки	3
Число пар полюсов	5
Рабочая температура обмотки, °C	180
Активное сопротивление фазы, мОм	124
Индуктивное сопротивление рассеяния фазы, мОм	737
ЭДС холостого хода, В	190
Ток фазы, А	53,7
Масса изделия, кг	16,5
Габаритные размеры, мм	178×318

АВИАЦИОННЫЙ ТЯГОВЫЙ ЭЛЕКТРОДВИГАТЕЛЬ

Авиационный тяговый электродвигатель предназначен для применения в качестве основного силового агрегата полностью электрического самолета

Авиационный тяговый двигатель:

- предназначен для прямой установки воздушного винта с частотой вращения 2100 об/мин:
- обеспечивает механическую мощность на винте 60 кВт при жидкостном охлаждении с помощью обычной автомобильной охлаждающей жидкости;
- является бесконтактным двигателем постоянного тока с постоянными редкоземельными магнитами;

весит всего 22 кг.

В ближайшее время запланированы исследовательские испытания электродвигателя на базе Центрального института авиационного моторостроения им. П.И. Баранова и дальнейшая его установка на самолет Сигма-4

Ранее в компании НаукаСофт был разработан и изготовлен двигатель-генератор для полностью электрического самолета ABФ-32HC.

Основные технические характеристики

Номинальная выходная мощность, кВт	50
Диапазон скоростей, об/мин	1600 – 2100
Максимальная выходная мощность, кВт	60
Диапазон напряжения, В	100 – 130
Максимальное значение тока статора, А	350
Номинальный момент, Н×м	250
кпд, %	93
Тип электрической цепи	Трехфазная звезда
Внешний диаметр, мм	320
Длина, мм	160
Материал магнита	NdFeB
Масса двигателя, кг	22

ВИХРЕВОЙ ТОПЛИВНЫЙ (ОДНОСТУПЕНЧАТЫЙ/ДВУХСТУПЕНЧАТЫЙ) ЭЛЕКТРОНАСОС (ВТН-НС)

Электронасос для топливных систем агрегатов, устройств и транспортных средств, работающих в тяжелых условиях эксплуатации. Предназначен для подачи топлива к двигателю, бустерному (подкачивающему) и перекачивающим струйным насосам

Электронасос состоит из:

- качающего узла;
- вентильного электродвигателя без датчика положения ротора;
- электронного блока управления электродвигателем.

Выполнен в едином герметичном взрывобезопасном корпусе, объединяющем эти устройства.

BTH-HC может быть погруженным в топливный бак или размещаться в контуре топливной системы вне бака.

Вентильный электродвигатель

Содержит следующие узлы:

- статор с беспазовой трехфазной компаундированной обмоткой, которая вмонтирована в цилиндрический пакет электротехнической стали;
- ротор с высококоэрцитивными постоянными магнитами, запрессованными на валу и имеющими бандаж из нержавеюшей стали;
- подшипниковые щиты с подшипниками скольжения.

Электронный блок управления

Обеспечивает плавный пуск электродвигателя и требуемый рабочий режим, соответствующий нагрузке, создаваемой насосом.

Топливо прокачивается через рабочий зазор электродвигателя, охлаждает обмотки и, через корпус блока управления, силовые ключи и другие элементы блока.

Электронасос топливный имеет указанные в представленной таблице параметры, подтвержденные экспериментально, что позволяет использовать его для топливных систем различных подвижных объектов, в том числе высокоманевренных летательных аппаратов.

Имеющийся в 000 «НПО НаукаСофт» опыт разработки и изготовления выше-указанного топливного насоса позволяет в кратчайшие сроки разработать, изготовить и поставить Вам топливные насосы с требуемыми характеристиками, отличающимися от представленных.

Технические характеристики для одноступенчатого / двухступенчатого насосов ВТН-НС:

Наименование характеристики	ВТН-НС 1-ст. / 2-ст.
Номинальное напряжение электропитания, В	27
Длительность непрерывной работы, час	56
Расход, л/ч	от 100 до 500
Перепад давлений, создаваемый насосом, атм	от 2 до 5

Одноступенчатый / двухступенчатый

Ток, потребляемый электронасосом, А	5–8	5–11
Масса, кг, не более	1,35	1,55
Минимальное абсолютное давление на входе в насос, атм	0,5	0,2

МНОГОЦЕЛЕВЫЕ ЭЛЕКТРОМЕХАНИЧЕСКИЕ ПРИВОДЫ

Электромеханические приводы вращательного действия серии EPAR

Привода серии EPAR разработаны для задач, в которых от привода требуются высокие динамические характеристики, точность позиционирования выходного вала, высокий коэффициент полезного действия, минимальные масса и габариты.

Многоцелевые электромеханические приводы вращательного и линейного действия являются замкнутой следящей системой, реализованной в виде двух блоков - исполнительного механизма и блока управления приводом. Для встраивания привода в автоматизированную систему заказчика в блоке управления приводом используются стандартные интерфейсы. Для автономной работы с приводами используется программное обеспечение «NikOsaDriver», входящее в комплект поставки.

Представленные в каталоге многоцелевые приводы серии EPAR, базового исполнения, могут быть модифицированы под индивидуальные требования заказчика.

Технические характеристики электромеханических приводов вращательного действия серии EPAR, замкнутых по положению

Наименование параметра, характеристики	Ед. изм.	EPAR 0501- 250-02	EPAR-1102- 250-03	EPAR-0501- 250-04	EPAR-0802- 250-05	EPAR-0301- 054-01
Максимальный момент	Н×м	208	1456	582	1198	112
Скорость при максимальном моменте	град/с	608	50	110	101	309
Максимальная скорость без нагрузки	град/с	698	54	123	108	413
Мощность привода	Вт	2207	1271	1118	2120	605
Напряжение питания	В	250	250	250	250	54
Максимальный ток	Α	13	7	5	9	15
Масса привода	кг	4.5	11.5	4.6	7.5	2.8
Длина привода × Сторона квадрата	ММ	164x93	163x162	163x100	188x108	148x73

EPAR 0802-250-05

EPAR 0301-054-01

Многоцелевые электромеханические приводы линейного действия серии EPAL

Многоцелевые приводы серии EPAL разработаны для задач, в которых от привода требуются высокие динамические характеристики, точность позиционирования штока, высокий коэффициент полезного действия, минимальные масса и габариты.

Многоцелевые электромеханические приводы линейного действия серии EPAL являются замкнутой по положению следящей системой, реализованной в виде двух блоков – исполнительного механизма и блока управления приводом. Для встраивания привода в автоматизированную систему заказчика в блоке управления приводом используются стандартные интерфейсы. Для автономной работы с приводами используется программное обеспечение «NikOsaDriver», входящее в комплект поставки.

Представленные в каталоге многоцелевые приводы серии EPAL, базового исполнения, могут быть модифицированы под индивидуальные требования заказчика.

Технические характеристики электромеханических приводов линейного действия серии EPAL

Наименование параметра, характеристики	Ед. изм.	EPAL-0306- 245-08	EPAL-1008- 190-11	EPAL-1007- 180-09	EPAL-2011- 180-10	EPAL-3213- 450-12	EPAL-6715- 530-13
Максимальное усилие	Н	6 273	21 363	31 366	31 366	51 836	160 850
Скорость при максимальном усилии	мм/с	204	200	62	62	206	63
Ход максимальный	ММ	300	400	300	700	800	800
Максимальная скорость	мм/с	234	222	69	69	217	66
Мощность привода	Вт	1 279	4 281	1 930	1 930	10 663	10 120
Напряжение питания	В	245	190	180	180	450	530
Максимальный ток	А	6	25	12	12	25	20
Масса привода	кг	3,2	7,8	10	22,7	39,50	89,10
Длина привода	ММ	523/823	696/1096	609/909	1009/1709	1250/2050	1401/2201

механические приводы серии EPAL могут быть использованы для управления аэродинамическими поверхностями, механизацией крыла, для уборки/выпуска шасси, взлетно-посадочных и вспомогательных устройств.

В машиностроении многоцелевые электромеханические приводы серии EPAL предназначены для создания экологически

При создании авиационной техники многоцелевые электро- чистых машин и являются достойной альтернативой применяемым электрогидравлическим приводам в строительных, сельскохозяйственных, транспортных машинах, промышленном технологическом оборудовании, системах создания управляемых статических и динамических нагрузок.

Многоцелевые электромеханические приводы линейного действия серии EPAL с параллельным расположением штока и электродвигателя

Многоцелевые электромеханические приводы серии EPAL-0302-024-06 и EPAL-0303-054-07 с параллельным расположением штока и электродвигателя разработаны специально для задач, в которых, существует конструктивное ограничение на длину привода. Представленные в каталоге многоцелевые приводы серии EPAL, базового исполнения, могут быть модифицированы под индивидуальные требования заказчика.

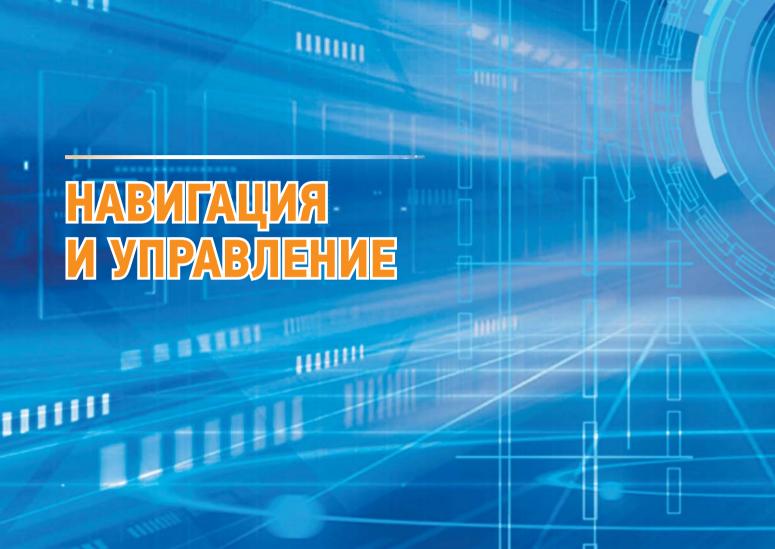
Технические характеристики электромеханических приводов линейного действия серии EPAL с параллельным расположением штока и электродвигателя

Наименование параметра, характеристики	Ед. изм.	EPAL-0302-024-06	EPAL-0303-054-07
Максимальное усилие	Н	1 267	4 926
Скорость при максимальном усилии	мм/с	90	57
Ход максимальный	ММ	100	100
Максимальная скорость	мм/с	114	77
Мощность привода	Вт	114	281
Напряжение питания	В	24	54
Максимальный ток	А	6	7
Масса привода	КГ	1,2	2,9
Длина привода	ММ	221/321	260/360

Быстродействующий электромеханический привод серии EPAL

Быстродействующий электромеханический привод серии EPAL обладает характеристиками, рассчитанными на его применение для создания управляемых усилий на тормозные диски колес опор шасси воздушного судна.

Представленный в каталоге быстродействующий электромеханический привод серии EPAL, базового исполнения, может быть модифицирован под индивидуальные требования заказчика.


Технические характеристики быстродействующего электромеханического привода серии EPAL

Наименование параметра, характеристики	Ед. изм.	EPAL-0302-150-01
Максимальное усилие	Н	19 778
Скорость при максимальном усилии	мм/с	49
Ход максимальный	мм	15
Максимальная скорость	мм/с	61
Мощность привода	Вт	967
Напряжение питания	В	150
Максимальный ток	Α	8
Масса привода	кг	3
Диаметр привода × Высота привода	мм	78×110

При создании авиационной техники быстродействующие электромеханические приводы серии EPAL предназначены для создания управляемых усилий сжатия тормозных дисков колеса шасси воздушного судна.

В машиностроении быстродействующие экологически чистые электромеханические приводы серии EPAL используются для замены гидравлических и электрогидравлических приводов в тормозных системах строительных, сельскохозяйственных,

транспортных машин и промышленном технологическом оборудовании.

ИНЕРЦИАЛЬНАЯ НАВИГАЦИОННАЯ СИСТЕМА (БИНС-500НС)

Малогабаритная бесплатформенная инерциальная навигационная система, построенная на базе трех волоконно-оптических гироскопов (ВОГ), трех акселерометров и спутникового приемника. Предназначена для широкого класса подвижных объектов различного назначения.

Основные функции системы БИНС-500НС:

- счисление и коррекция углов ориентации;
- счисление и коррекция координат;
- счисление и коррекция скоростных параметров;
- информационный обмен с потребителями по стандартным интерфейсам.

Основные модули системы БИНС-500НС:

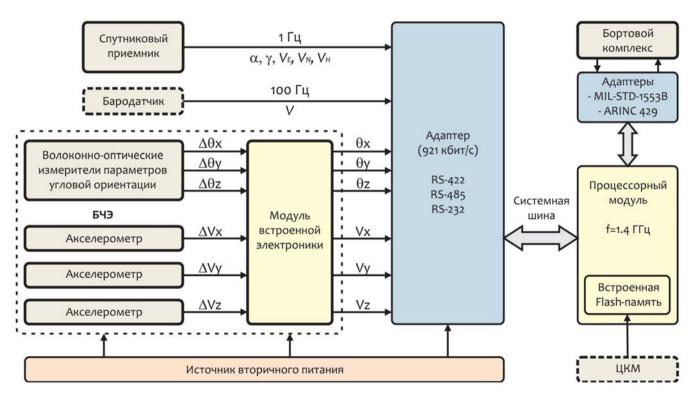
- блок чувствительных элементов (БЧЭ);
- процессорная плата;
- приемник спутниковой навигационной системы (СНС);
- антенный блок;
- модуль (плата) питания.

Технология построения аппаратного и программно-математического обеспечения системы БИНС-500НС

Бесплатформенная инерциальная навигационная система БИНС-500НС разработана на основе модульной технологии построения аппаратного и программно-математического обеспечения. Отличительные особенности модульной технологии:

- унификация и стандартизация процессорных и программно-математических модулей;
- адаптация интерфейсных модулей под объект;
- буферизация потоков данных и распараллеливание вычислений;
- синхронизация процедур обработки данных в модулях; многоуровневая RISCорганизация вычислительного процесса;
- обмен данными между модулями по системной шине:

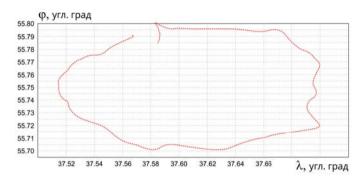
- повышение однородности вычислительного процесса на основе минимизации количества проверок и условий;
- согласование процедур первичной и вторичной обработки сигналов с возможностями вычислительного ядра;
- открытая архитектура, позволяющая расширять вычислительные ресурсы и модернизировать БИНС под объект.

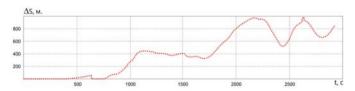

Измерительные элементы БИНС построены на различных физических принципах. Разработки выполняются на основе единой объектно-ориентированной модульной технологии проектирования аппаратного и программно-математического обеспечения (ПМО). ПМО поддерживается модульной операционной системой реального времени Linux или QNX и может быть адаптировано к БИНС на базе чувствительных элементов различного принципа действия. В ПМО может включаться также цифровая карта местности.

Режимы работы системы БИНС-500НС

Начальная выставка	Навигация	Тест-контроль
а) ускоренная начальная выставка системы по вы-	а) автономная инерциальная навигация;	а) в процессе начальной выставки по ин-
ходным сигналам ее чувствительных элементов;	б) спутниковая навигация;	формации об инвариантах;
б) точная начальная выставка системы на основе	в) автономная инерциальная навигация с довыставкой в по-	б) в режиме навигации по инерциально-
комплексной обработки наблюдений инвариантов.	лете по спутниковой информации;	спутниковым наблюдениям.
	г) комплексная инерциально-спутниковая навигация.	

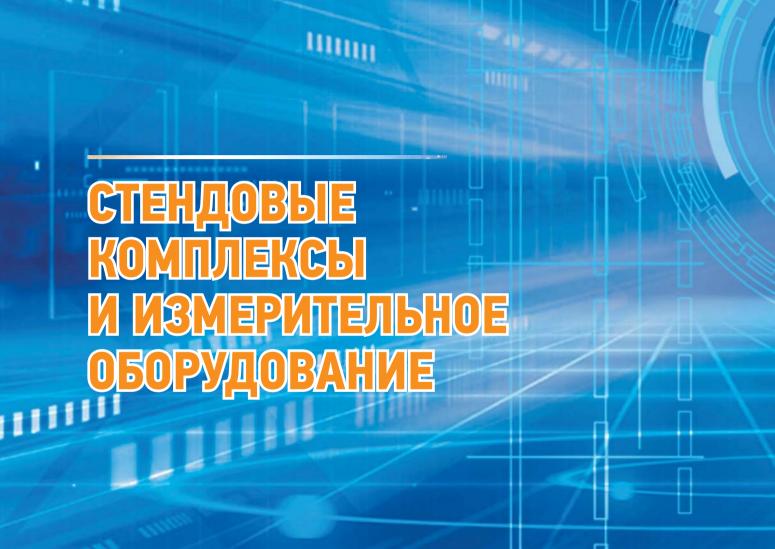
Типовая структура БИНС модульной архитектуры


На схеме толстыми линиями выделены нестандартные элементы, а тонкими – элементы, имеющие стандартные типоразмеры; БЧЭ — блок чувствительных элементов; ЦКМ - цифровая карта местности. Спутниковый приемник и бародатчик устанавливаются по требованию заказчика.


Технические характеристики системы БИНС-500НС

Диапазон угловых скоростей, гр./с	± 300
Диапазон рабочих температур, °С	от -40 до +60
Диапазон линейных ускорений, д	≤ 10
Частота обновления данных, Гц	≤ 1000
Частота выдачи потребителю навигационных параметров, Гц	≤ 400
Систематический дрейф гироскопов, угл. гр./ч	≤ 0,05
Случайный дрейф гироскопов, угл. гр./ч	≤ 0,01
Позиционная ошибка в автономном режиме, км за час	≤ 2,0
Позиционная ошибка в автономном режиме с учетом компенсации оценок остаточных дрейфов измерителей, км за час	≤ 1,4
Позиционная ошибка в инерциально- спутниковом режиме, м	20
Время автономной начальной выставки, мин	10-15
Напряжение питания, В	27
Потребляемая мощность, Вт	18
Габариты, мм	243×158×112
Вес, кг	4

Точностные характеристики БИНС-500НС в натурном эксперименте



Траектория движения

Круговая позиционная ошибка БИНС-500 НС с учетом демпфирования сбоев и оценок дрейфов чувствительных элементов (ЧЭ)

Комплексная обработка информации в системе реализована на основе адаптивно-робастного фильтра (АРФ) Калмана 22 порядка. Технические решения запатентованы (Патент РФ № 2160496).

МОБИЛЬНАЯ ИЗМЕРИТЕЛЬНО-ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА (МИВС-3)

Мобильная вычислительная система МИВС-3— это устройство для измерения качества электроснабжения и других параметров электроэнергии систем электроснабжения летательных аппаратов. Применяется в измерительных и испытательных лабораториях

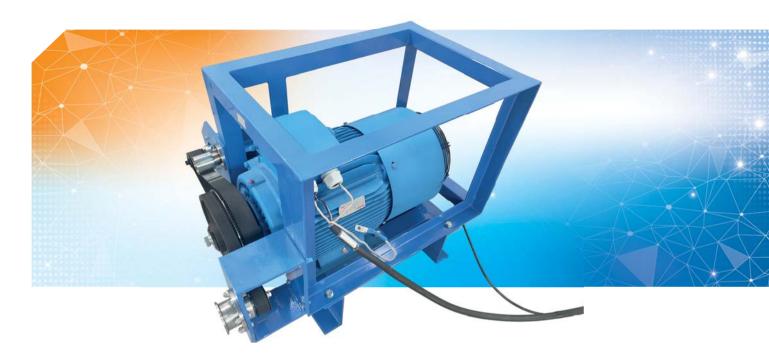
МИВС-3 – измерительное устройство, имеющее изолированные от корпуса входы для измерения параметров объекта в четырехпроводной трехфазной электрической сети переменного тока, однопроводной сети постоянного тока и выполняющее следующие функции:

- вычисление текущих значений параметров;
- накопление и статистическую обработку полученной информации;
- вывод измеряемой информации в графической форме на дисплей;
- вывод протокола результатов измерений.

Технические характеристики МИВС:

- имеет 16 входов и обеспечивает одновременную регистрацию двух 3-х фазных систем генерирования переменного тока и двух систем постоянного тока;
- допускает непрерывную работу не менее 24 часов при подключении к сети переменного тока и обеспечивает непрерывную работу от встроенной Li-lon батареи не менее 1 часа при полной нагрузке;

- полная мощность, потребляемая от сети переменного тока, при номинальном напряжении питания — не более 100 ВА;
- масса не более 10 кг;
- габаритные размеры прибора 350x300x150 мм.

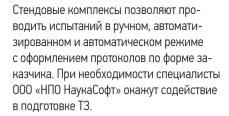

В настоящее время выделяют различные виды МИВС, в том числе военный. Применяются в ОАО «Московский вертолётный завод имени М.Л. Миля», ОАО «РСК «МиГ», ОАО «Компания «Сухой», ГЛИЦ МО РФ имени В.П. Чкалова, ОАО «Раменское приборостроительное конструкторское бюро» и др.

МИВС имеет сертификат об утверждении типа средств измерений военного назначения № 41179 от 10.11.2010 г.

Наименование измеряемого показателя качества электрической энергии, ед. изм.	Обозна- чение	Диапазон измерения	Относительная погрешность из- мерений
Установившееся значение напряжения постоянного тока, В	Un	от 19 до 100	± 0,2 %
Установившееся значение напряжения переменного тока, В	U _{nep}	от 80 до 250	± 0,2 %
Установившееся значение постоянного тока, А	I _n	от 0 до 4500	± 0,5 %
Установившееся значение переменного тока, А	I _{ПЕР}	от 0 до 3000	± 0,5 %
Небаланс напряжений переменного тока, В	К	от 0 до 100	± 0,5 %
Коэффициент искажения синусоидальности кривой напряжения переменного тока, %	K _{NCK}	от 0 до 10	± 1 %

Наименование измеряемого показателя качества электрической энергии, ед. изм.	Обозна- чение	Диапазон измерения	Относительная погрешность из- мерений
Коэффициент амплитудной модуляции напряжения переменного тока, %	K _{AM}	от 0 до 5	±1%
Коэффициент амплитудного значения напряжения переменного тока, отн.ед.	К	от 1,2 до 1,6	± 1 %
Установившееся значение частоты напряжения переменного тока, Гц	F	от 350 до 450	± 0,2 %
Скорость изменения частоты напряжения переменного тока, Гц/с	V_f	от 0 до 3	± 1 %
Коэффициент пульсаций напряжения постоянного тока, %	K _n	от 0 до 10	± 1 %
Коэффициент модуляции частоты напряжения переменного тока, %	К _{чм}	от 0 до 2	± 2,5 %
Угол сдвига фаз между напряжениями перемен- ного тока, град	j	от 110 до 130	± 1 %

СТЕНДОВЫЕ КОМПЛЕКСЫ И ИЗМЕРИТЕЛЬНОЕ ОБОРУДОВАНИЕ


000 «НПО НаукаСофт» разрабатывает и изготавливает по индивидуальным заданиям стендовые испытательно-измерительные комплексы систем электроснабжения летательных аппаратов

Виды стендовых комплексов:

- испытательный комплекс каналов и систем генерирования;
- испытательный комплекс систем распределения постоянного и переменного тока:
- испытательный комплекс систем электроснабжения постоянного и переменного тока.

Стендовые комплексы позволяют выполнять все виды испытаний агрегатов и систем электроснабжения в соответствии с «Методикой 1305-89 Стендовых испытаний систем электроснабжения. Вып. 4».

УГОЛКОВЫЕ ОТРАЖАТЕЛИ (УО-0,5; УО-0,75 И УО-1,25)

Уголковые отражатели предназначены для создания искусственных радиоконтрастных объектов различного назначения (имитация реальных крупногабаритных объектов, мишени, маркеры, точки прицеливания)

Выпускаются несколько типоразмеров отражателей: УО-1,25, УО-0,75, УО-0,5, отличающиеся длиной грани и величиной эффективной площади рассеивания.

Значение ЭПР для разных типов УО (м²)

T VO	Длина волны (см)				
Тип УО	2	3	4	10	
УО-0,5	5 888	2 617	1 472	236	
УО-0,75	29 805	13 247	7 451	1 192	
УО-1,25	229 980	102 214	57 495	9 199	

РАМЫ ДЛЯ УСТАНОВКИ АВИАЦИОННОГО ОБОРУДОВАНИЯ ПО СТАНДАРТУ ARINC 600

Рамы для установки авиационного оборудования всех типоразмеров согласно стандарту ARINC 600 (от 1 до 12 МСИ). Соответствуют повышенным экологическим требованиям, разработаны для длительной работы в средах с повышенной вибрацией и обеспечивают повышенную безопасность при столкновении

Особенности охлаждения оборудования

Для авиационного оборудования с требованиями к охлаждению рамы могут поставляться:

- с конвекционным потоком воздуха: без внешнего принудительного воздушного охлаждения может потребовать короб с овальным вырезом для оптимизации нормальной конвекции;
- с принудительным воздушным охлаждением: предназначенные для обеспечения принудительного воздушного охлаждения от централизованной системы самолета или вентилятора, установленного на раме;
- с дополнительным уплотнением: впускные отверстия для воздуха в дозирующей пластине. Для сборок, требующих вентилятора, мы также предоставляем открытую дозирующую пластину или уплотнение;
- с вентиляторными сборками и фильтрами: рамы поставляются с вариантами для вентиляторов на задней, боковой или нижней подвеске и соответствуют требованиям охлаждения ARINC 600.

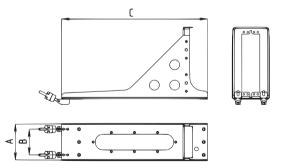
Передние фиксаторы:

- с автоматической блокировкой;
- с ограничителем крутящего момента;
- без фиксации.

Варианты охлаждения:

- без вентилятора;
- вентилятор 115 В переменного тока, 400 Гц;
- вентилятор 27В постоянного тока.

Варианты установки системы охлаждения:


- без воздуховодов;
- задний монтаж:
- монтаж на правую сторону;
- монтаж на левую сторону;
- монтаж в нижней части.

Соответствие стандартам:

- KT-160G:
- RTCA-D0160:
- MILSTD-810.

Особенности рам:

- высокопрочные материалы;
- увеличенные радиусы изгиба;
- повышенная прочность.

Размеры рам

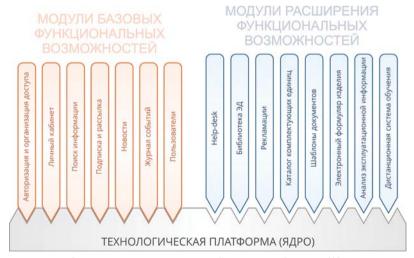
Размер	1 MCU	2 MCU	3 MCU	4 MCU	5 MCU	6 MCU
A, mm	28	61	94	127	160	193
В, мм	-	-	66	66	99	132
С, мм	380 или 529					

Размер	7 MCU	8 MCU	9 MCU	10 MCU	11 MCU	12 MCU
A, mm	226	259	292	325	358	391
В, мм	168	198	231	264	297	330
С, мм	380 или 529					

АВТОМАТИЗИРОВАННАЯ СИСТЕМА ОКТАВА-НС

Информационно-аналитическая система поддержки обслуживания продукции предприятия в гарантийный и послегарантийный периоды

«Октава—НС» обеспечивает эксплуатирующей организации поддержку следующих процессов обслуживания продукции предприятия:


- предоставление пользователям доступа к актуальной технической и эксплуатационной документации;
- организация обмена данными с пользователем по контролю характеристик и параметров работы продукции предприятия;
- организация системы заказов комплектующих единиц продукции предприятия в электронном виде;
- организация системы ведения рекламационной работы в электронном виде с возможностью создания электронных отчетов за квартал, полугодие, год;
- обмен информацией между эксплуатирующей организацией и предприятием с целью поддержания актуального состояния сведений по продукции предприятия;
- поддержка клиентов предприятия в режиме «on-line» по срочным и текущим техническим вопросам эксплуатации продукции предприятия;

 создание имиджа компании как современного и прогрессивного предприятия в области поддержки своих клиентов с применением информационных технологий.

Состав и назначение прикладных программных модулей

«Октава—НС» состоит из следующих основных компонентов:

- Технологическая платформа системы (ядро системы);
- Прикладные программные модули (ППМ).

Состав автоматизированной системы «Октава–НС»

Внедрение «Октава—НС» возможно в следующих комплектациях:

- Базовая (ядро системы с минимальным набором ППМ);
- Расширенная (базовая комплектация + дополнительные ППМ)

Состав базовой комплектации «Октава— HC» определяется следующим набором модулей:

- «Технологическая платформа» является ядром автоматизированной системы «Октава—НС». Модуль предназначен для организации функционирования системы и взаимодействия ППМ;
- «Авторизация и организация доступа» предназначен для идентификации пользователя и обеспечения механизма доступа к информационным ресурсам системы;
- «Личный кабинет» предназначен для отображения сводной информации по эксплуатирующей организации и используемой продукции предприятия, а также для организации доступа к различным разделам системы;

- «Поиск информации» предназначен для поиска информации по всем разделам системы;
- «Подписка и рассылка» предназначен для организации подписки пользователей на новостную рассылку системы по определенным разделам системы и тематикам;
- «Новости» предназначен для организации новостной ленты системы;
- «Журнал событий» предназначен для организации и ведения системы контроля действий пользователей системы;
- «Пользователи» предназначен для администрирования пользователей системы.

При внедрении расширенной комплектации состав «Октава—НС» может дополняться следующими ППМ:

- «Help-desk» предназначен для поддержки клиентов предприятия в режиме on-line по срочным и текущим техническим вопросам эксплуатации продукции предприятия;
- «Библиотека ЭД» предназначен для доступа эксплуатирующей организации к актуальной эксплуатационной документации на продукцию предприятия;

- «Рекламации» предназначен для организации и ведения рекламационной работы в электронном виде с возможностью создания электронных отчетов за квартал, полугодие, год.
- «Каталог комплектующих единиц» предназначен для организации и ведения каталога комплектующих единиц продукции предприятия, а также для организации системы приема заказов на комплектующие единицы в электронном виде;
- «Шаблоны документов» предназначен для формирования эксплуатационных и отчетных документов в электронном виде;
- «Электронный формуляр изделия» предназначен для ведения формуляра изделия в режиме on-line;
- «Анализ эксплуатационной информации» предназначен для анализа дампов эксплуатационной информации изделия, а также представления результатов анализа в графической форме;
- «Дистанционная система обучения»* предназначен для организации системы дистанционного обучения различных категорий пользователей системы.

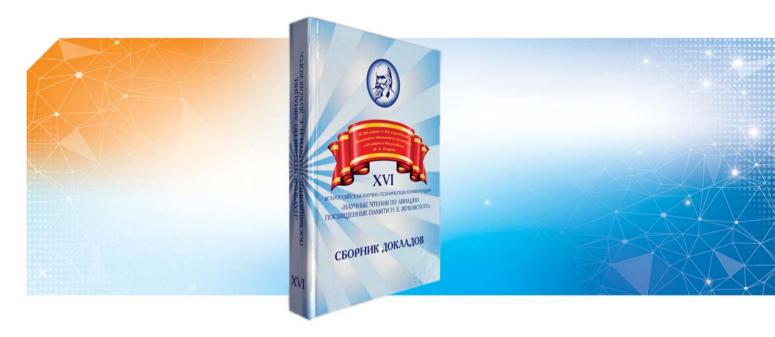
Перечень работ по внедрению АС

Системное обследование деятельности предприятия в рамках функциональных задач подлежащих автоматизации:

 Формирование технического задания на модернизацию информационного обеспечения ППМ.

Инсталляция и модернизация «Октава—НС»:

- Модификация архитектуры информационного обеспечения ППМ «Октава—НС»:
- Разработка дизайна «Октава-НС»;
- Модификация информационного обеспечения ППМ «Октава—НС»;
- Инсталляция технологической платформы;
- Инсталляция ППМ «Октава-НС»;
- Верстка пользовательских интерфейсов ППМ «Октава—НС».


Тестирование и ввод в опытную эксплуатацию:

- Ввод в опытную эксплуатацию (отладка и доработка);
- Подготовка комплекта эксплуатационной документации по перечню согласованного с заказчиком;
- Приёмо-сдаточные испытания

Сроки и стоимость внедрения АС

Сроки и стоимость выполнения работ по внедрению «Октава—НС» зависят от набора ППМ. Время и стоимость работ по внедрению автоматизированной системы могут быть скорректированы по результатам системного обследования деятельности предприятия, а также дополнительными функциональными возможностями комплектации.

СИСТЕМА ПОДДЕРЖКИ И ОРГАНИЗАЦИИ КОНФЕРЕНЦИЙ (СПОК)

Система поддержки и организации конференций (СПОК) предназначена для обеспечения эффективной работы по подготовке и проведению научных мероприятий, таких как конференции, семинары, симпозиумы и т.п.

Основными функциональными возможностями СПОК являются:

- регистрация конференций;
- формирование единой базы пользователей системы;
- регистрация участников конференции;
- сбор материалов и сопровождающих документов зарегистрированных участников;
- контроль за результатами определенных этапов подготовки и проведения конференции;
- подготовка отчетов о результатах проведения конференции;
- информационная поддержка мероприятия
- подготовка интерактивного каталога материалов конференции.

Наполнение следующих разделов общедоступной информации:

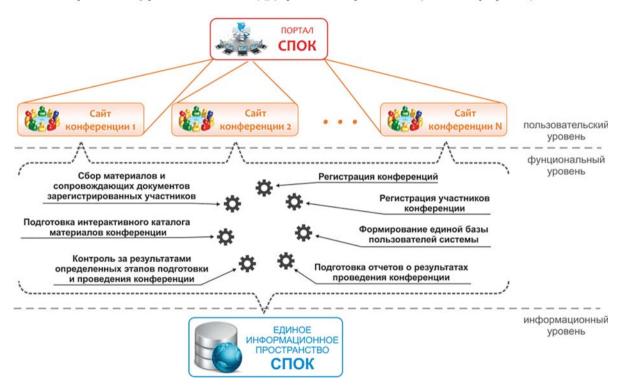
- о конференции (цели и задачи конференции, история конференции, руководство конференции, отзывы участников);
- организаторы (Основные организаторы, соорганизаторы, патронат, поддержка, оператор, организационные партнеры, партнеры, информационные партнеры, и т.п.);

- участникам (участники конференции, доклады конференции, условия участия, условия размещения, требования к оформлению материалов, оплата);
- контакты:
- новости конференции;
- фото-видео архив.

Функциональные возможности СПОК реализуются на основе web-технологий. Система может быть развернута в LAPP (Linux-Apache-PostgreSQL-PHP) или WAPP (Windows-Apache-PostgreSQL-PHP) модели.

Структурно все компоненты СПОК можно разнести на три уровня:

- пользовательский уровень реализован как отдельные сайты конференций с возможностью их интеграции в общий портал СПОК поддержки и организации конференций;
- функциональный уровень подсистема web-сервисов реализующих все функциональные возможности СПОК:
- информационный уровень система управления базами данных с единой базой данных СПОК.


СПОК была апробирована при подготовке к проведению международной научно-практической конференции «Инновации на основе информационных и коммуникационных технологий» (генеральный организатор — Московский институт электроники и математики НИУ ВШЭ).

СПОК была использована при проведении Всероссийских научно-технических конференций «Научные чтения по авиации, посвященные памяти Н.Е. Жуковского».

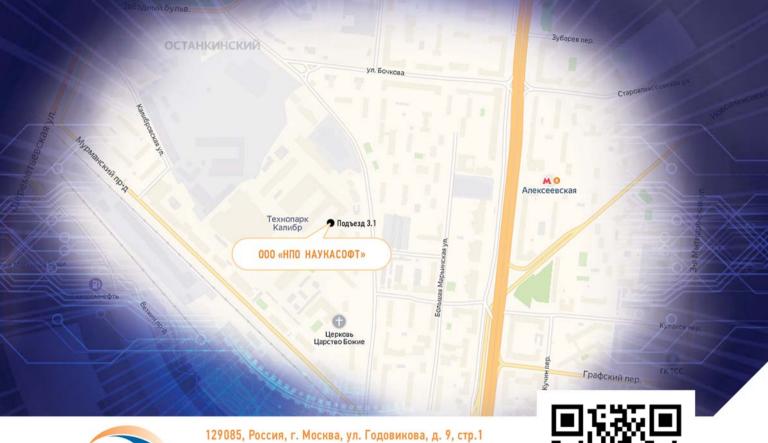
Схематично архитектура СПОК приведена на рисунке ниже

Архитектура системы поддержки и организации конференций

ПСПНП-15

Программа счисления пилотажно-навигационных параметров, контроля, оценки и компенсации погрешностей датчиков бесплатформенной инерциальной навигационной системы (в реестре Роспатента № 2016610599)

Программа для ЭВМ предназначена для счисления пилотажно-навигационных параметров, контроля, оценки и компенсации погрешностей датчиков бесплатформенной инерциальной навигационной системы. Программа обеспечивает повышение точностных характеристик и информационной надежности на основе комплексирования данных от спутниковой и бесплатформенной инерциальной навигационных систем.


Программа может быть использована для автономного инерциального и комплексного инерциально-спутникового определения и выдачи потребителям углов ориентации, позиционных и скоростных параметров. Функциональные возможности программы позволяют определять и парировать нарушения инерциальных измерителей. Программа имеет открытую модульную архитектуру, позволяющую обрабатывать информацию инерциальных измерителей различного принципа действия.

Язык программирования: С++.

Вид и версия операционной системы: Linux 2.6., Debian 6.0, Astra Linux 1.10, QNX 6.5, Windows.

Объем программы для ЭВМ: 73,3 Кб.

+7 (495) 255-36-35 тел.: тел./факс: +7 (499) 558-00-49 contacts@naukasoft.ru e-mail: сайт: https://naukasoft.ru

Почтовый

129085, г. Москва, а/я 119 адрес: